

Capturing Carbon, Creating Change

Posted at: 21/05/2025

Capturing Carbon, Creating Change: India's Sustainable Future

Context

- India has committed to achieving **net-zero emissions by 2070**, aligning with its pledge under the **Paris Climate Agreement**.
- To achieve this, India is adopting multiple technological and policy measures, including a focus on **Carbon Capture**, **Utilization**, and **Storage** (**CCUS**).
- CCUS is particularly important for decarbonizing **hard-to-abate sectors** such as thermal power, steel, cement, and oil refining.
- The technology gained global attention during the **COP28 Climate Summit in Dubai** (2023), where it was seen as essential for deep decarbonization strategies.

What is CCUS (Carbon Capture, Utilization, and Storage)?

CCUS refers to a suite of technologies aimed at **capturing carbon dioxide (CO₂)** emissions from major sources before they enter the atmosphere.

• Once captured, CO₂ is either:

- **Stored** in geological formations such as **saline aquifers or depleted oil and gas fields**, or
- **Utilized** in the production of chemicals, fuels, or building materials.
- It is seen as a **transitional solution** to support countries like India in meeting climate goals while continuing to use fossil-based infrastructure.

Three Key Stages of CCUS

- **1. Capture Stage**
 - The process involves separating CO₂ from industrial gas streams.
 - Technologies used:
 - **Chemical solvent-based methods** suitable for gas streams with low CO₂ concentrations.
 - **Physical solvent-based methods** used when CO₂ concentrations are high.
 - Adsorption techniques applied to medium concentration streams like Steam Methane Reforming (SMR).
- **2. Utilization Stage**
 - Captured CO₂ is converted into value-added products, such as:

NNN!

- Green urea
- $\circ~$ Dry ice
- Carbonated beverages

• Building materials

Industrial chemicals

3. Storage Stage

- Long-term storage is done in secure geological locations:
 - Saline aquifers
 - $\circ\,$ Depleted oil and gas fields

• Deep unmineable coal seams

• These formations act as permanent CO_2 sinks to prevent atmospheric release.

Potential Benefits of CCUS for India

- Direct emission reduction CCUS captures CO₂ before it enters the atmosphere.
- Decarbonization of industrial sectors Useful for high-emission sectors such as:

ins.col

- Coal-based power
- Steel
- Cement
- Oil refineries
- Support for clean fuel production Captured CO₂ can be used to synthesize:

• Green hydrogen

Ammonia

Synthetic methane

• **Climate change mitigation** – Reduces overall greenhouse gas load in the atmosphere.

• Job creation – Opportunities in engineering, construction, transport, and storage sectors.

• **Complement to renewable energy** – Provides a base-load alternative where solar and wind are not viable.

Challenges in Implementing CCUS in India

- High capital cost Infrastructure and technology deployment require large upfront investments.
- **Technology readiness** Innovations like **Direct Air Capture (DAC)** are still in early stages.
- Lack of investment The sector is yet to gain momentum from private and institutional investors.
- Infrastructure constraints -
 - Need for **specialized pipelines** to transport CO₂.
 - Existing oil/gas pipelines are **unsuitable** due to corrosion risks.
- Storage challenges -
 - Limited availability of safe and suitable geological sites.
 - Many storage sites are **geographically distant** from emission sources.
- **Policy and regulatory gaps** No unified national regulation exists to oversee CO₂ capture, transport, utilization, and storage.

What Lies Ahead: India's Approach

• India is preparing to launch a National CCUS Mission, focused on:

• Power

 \circ Steel

• Cement industries

- Policy support required includes:
 - Viability Gap Funding (VGF)
 - Production Linked Incentives (PLI)
 - **Tax credits** for industries and innovators
- Need for a robust **regulatory framework** governing: okkoinsion
 - Site selection
 - Safety standards
 - Monitoring and liability
- Importance of **R&D investment** to:
 - Improve CO₂ capture efficiency
 - Lower costs
 - Develop new utilization technologies
- **Public-private partnerships** will be key to financing and scaling up projects.

