

Carbon Capture, Usage, and Storage (CCUS): A Pathway to Decarbonization

Posted at: 22/05/2025

Carbon Capture, Usage, and Storage (CCUS): A Pathway to Decarbonization

Why in the News?

In its commitment to achieve **net-zero emissions by 2070**, India has prioritized the development of **Carbon Capture**, **Usage**, **and Storage (CCUS)** technologies. CCUS emerged as a key theme during **COP28** (held in Dubai, 2023), signaling global recognition of its potential in mitigating climate change.

What is CCUS?

Carbon Capture, Usage, and Storage (CCUS) is a group of technological solutions that capture carbon dioxide (CO₂) emissions from large industrial sources like:

- Thermal power plants
- Cement and steel factories
- Oil refineries

Once captured, CO₂ is either:

- Stored underground in geological formations, or
- **Utilized** in producing commercially valuable products.

Thus, CCUS helps prevent CO_2 from entering the atmosphere while enabling a

circular carbon economy.

Stages of CCUS Technology

1. Carbon Capture

This is the **first step**, involving the separation of CO_2 from gas emissions at the source. The method used depends on CO_2 concentration:

Chemical Solvent-based Capture

- Ideal for low-concentration CO₂ streams (e.g., natural gas processing).
- $\circ\,$ Common solvents: Amine-based compounds.
- Physical Solvent Methods
 - Effective for high-concentration CO₂ streams (e.g., pre-combustion in industrial plants).
 - Uses solvents like Selexol or Rectisol.
- Adsorption Techniques

 Suitable for moderate CO₂ concentrations, like in Steam Methane Reforming (SMR).

• Uses solid materials like activated carbon or zeolites to trap CO₂.

2. Carbon Utilization

In this stage, the captured CO₂ is **repurposed** into products such as:

- Green urea (for fertilizers)
- **Dry ice** (used in cooling)

- Carbonated beverages
- Building materials (e.g., carbon-infused concrete)
- Industrial chemicals and biofuels
- **3.** Carbon Storage

Unutilized CO₂ is **injected deep underground** for long-term isolation. Common storage sites include:

- Depleted oil and gas fields
- Deep saline aquifers
- Basalt formations and other secure geological layers

Potentials of CCUS for India

1. Direct Emission Reductions

• CCUS captures CO₂ **before** it reaches the atmosphere, directly cutting emissions at the source.

2. Decarbonizing Industrial Sectors

• Crucial for hard-to-abate sectors like cement, steel, and coal-powered industries, which contribute significantly to India's emissions.

3. Production of Green Fuels

- CO₂ can be converted into **clean fuels** like **hydrogen**, **methane**, and **green ammonia**, enabling energy transition.
- 4. Supports Renewable Energy Goals

• CCUS complements **solar and wind power**, especially in sectors where renewable alternatives are not yet viable.

5. Climate Change Mitigation

• Helps slow global warming by reducing **greenhouse gas concentrations**.

6. Job Creation

• New opportunities arise in **construction**, **engineering**, **R&D**, **operations**, and **supply chain management** of CCUS facilities.

riosc

Challenges in CCUS Deployment

- 1. High Capital Costs
 - Significant investment is required for:
 - Capture units
 - CO₂ pipelines
 - Underground storage sites

. Nasce<mark>nt Technolog</mark>y

Advanced forms like **Direct Air Capture (DAC)**—which captures CO₂ from ambient air—are still in the early stages and costly.

3. Limited Investment

- Private sector interest is low due to **uncertain returns**, long gestation periods, and lack of policy clarity.
- 4. Infrastructure Bottlenecks

- CO₂ needs **dedicated pipelines** for safe transport. Existing pipelines (designed for oil/gas) may not be compatible.
- \circ Impurities in CO2 can cause **pipeline corrosion**.

5. Storage Site Identification

- $\circ\,$ Suitable geological sites are:
 - Unevenly distributed
 - Often far from emission sources
 - Require detailed geotechnical studies
- 6. Regulatory and Legal Uncertainty
 - There is **no comprehensive framework** governing CO₂ capture, transportation, storage, and liability in India.

e c n n

Way Forward

- 1. Launch of a National CCUS Mission
 - Focused on hard-to-abate sectors like power, cement, and steel.

• Aim to scale up CCUS deployment with clear roadmaps and targets.

2. Incentivization Mechanisms

- Provide **Viability Gap Funding (VGF)** to make CCUS projects financially viable.
- Introduce **Production-Linked Incentives (PLI)** and **carbon credits** for industries using CCUS.

• Offer tax credits/subsidies for early adopters.

3. Policy and Regulatory Support

- $\circ\,$ Frame clear guidelines and safety standards for CO2 capture, storage, and reuse.
- Create monitoring and verification frameworks for long-term storage.

4. Investment in R&D

- Support innovation to improve **capture efficiency**, **cost reduction**, and **new utilization pathways**.
- Encourage collaboration between **government**, academia, and industry.

5. Capacity Building and Awareness

• Train professionals and sensitize industries and the public on the importance and potential of CCUS.

Conclusion

Carbon Capture, Usage, and Storage (CCUS) represents a **critical bridge technology** that enables India to achieve its **net-zero by 2070 goal**, while supporting economic growth. Despite current challenges—costs, infrastructure, and regulation—the strategic importance of CCUS in **decarbonizing heavy industries**, creating **green jobs**, and ensuring **energy security** is immense. With the right policy push, technological innovation, and public-private collaboration, CCUS can become a cornerstone of India's climate action strategy.